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Oscillatory behavior in a lattice prey-predator system
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Using Monte Carlo simulations we study a lattice model of a prey-predator system. We show that in the
three-dimensional model populations of preys and predators exhibit coherent periodic oscillations but such a
behavior is absent in lower-dimensional models. Finite-size analysis indicate that amplitude of these oscilla-
tions is finite even in the thermodynamic limit. This is an example of a microscopic model with stochastic
dynamics which exhibits oscillatory behavior without any external driving force. We suggest that oscillations
in our model are induced by some kind of stochastic resonance.
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[. INTRODUCTION ior and remain bounded for=0. It is not clear, however,
how these particular functions should be related to character-
Oscillatory behavior in spatially extended systems, whichistics of the populations.

appears in various forms in many branches of physics, is still Recently, a lattice model of a prey-predator system was
not fully understood1]. As an example of such a behavior introduced[9]. It was shown that in the steady state this
we can mention periodic oscillations in certain autocatalyticmodel has two phasegt) an active phase with a positive
reactions[2]. From the theoretical point of view, the main fraction of both prey and predators afiil) an absorbing
problem is that inevitable fluctuations should wipe out anyphase with predators being extinct and prey invading the
coherent behavior in such systems, thus questioning the velysje system. For certain values of a control parameter the
existence of periodic_oscilla}tions. Indegd, nu'meri'cal analysig,qqel undergoes a phase transition of the directed-
Oj a Certaln” one-(_ilmensmnal reaction dlffus_lon rnOdeIpercolation universality class, which is actually an antici-
(“Brusselator”) confirms a very strong destructive role of pated property, taking into account the existence of a single

the fluctuations in such S.ySt.e'E&.]' . .. _absorbing state in the model's dynamjd$)].
Another example of this kind is the oscillatory behavior in . : : .
An important feature of such a lattice model is that its

prey-predator systems, which is one of the classical problems . ; . . ;
in population dynamics. In the most transparent way sucfproperties might be_ studl_ed using controllable techniques,
oscillations were observed for populations of hares an€-9- Monte Carlo simulations, rather than postulated equa-

lynxes [4]. The earliest explanation of oscillations in such ions. Moreover, such a microscopic model takes into ac-
systems was proposed by Lotka and Voltefa In their ~ Count fluctuations in the system that are completely ne-
model, populations of prey and predators are described b lected in models based on differential equations such as Eq.

the following set of differential equations: 1). And it is these fluctuations that are responsible for the
appearance of the phase transition in this model, since the
mean-field approximation, which is equivalent to a certain
dx dy : . . -
a:ax_bxy’ il —cy+dxy, (1)  set of differential equations similar to E€L) (and thus ne-

glects fluctuations predicts that the active phase is the ge-
neric phase of the model for all values of the control param-
where x and y denote the number of prey and predators,eter, and no transition takes place.
respectively, an@,b,c,dare certain positive constants. In the present paper we examine the time evolution of
Simple analyses of modél) indeed reveal the existence densities of preyx(t) and predatorsy(t) in the above-
of a limit cycle, i.e., populations of prey and predators ex-described lattice model. One might expect that fluctuations,
hibit periodic(in time) oscillations. However, modél) has  which in our model are caused by the stochastic nature of the
certain drawbacks. In particular, it predicts an unboundeddynamics, result in a random and noncorrelated evolution of
exponential growth of the number of prey in the absence othese densities. And indeed such a behavior is observed, but
predators Yy=0). To cure this defect one has to introduceonly in a one-dimensional version of our model. In a two-
additional terms into these equatiof@nvironmental capac- dimensional model the behavior of these densities is still
ity) and such terms in general destroy the limit-cycle solu-rregular, but a pronounced peak in a Fourier transform of
tions and asymptoticallyi.e., for t—o«) the constant solu- x(t) andy(t) appears, and for the three-dimensional model
tions are obtained7,8]. In this respect modell) might be  very regular periodic oscillations are observed. We argue
more precisely termed as structurally unstable. that these oscillations are induced by a certain kind of sto-
In principle, one can replace right-hand sides of the abovehastic resonancgl2] and we suggest an analogy with a
equations by more complicated functionsxadindy, and the  certain low-dimensional dynamical system examined some
resulting equationg6] will exhibit both a limit-cycle behav- time ago by Gangt al. [11].
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FIG. 1. Steady-state densities of preotted lineg and preda- FIG. 2. Time evolution ok(t) andy(t) for the one-dimensional
tors(dashed linesfor the one{LJ) and three-dimensionék) mod- 1, 4e| andr=0.6. Calculations were made for the linear size
els as functions of, as calculated using Monte Carlo simulations L =2000.

[9]. Mean-field results are shown by a solid line.

produces one offspring and places it on the empty (sie-

In addition to offering a model of prey-predator systems,sen randomly when there are more such sites
our results are also of somewhat more general interest. They A steady-state description of our model is given in terms
show that, in spatially extended systems, intrinsic fluctua-of densities of prey and predatory, which might also be
tions alone might induce periodic oscillations. This should beregarded as the probabilities that a given site is occupied by
contrasted with the standard stochastic resonance setting,prey or a predator, respectively. Monte Carlo simulations
where some sort of external periodic perturbation is requiredof the above model predi¢®] that this model will undergo

The paper is organized as follows. In Sec. Il we introducethe phase transition at a certain value of the parameter
the model and only briefly describe its steady-state properr=r.(d). The transition pointr (d) separates the active
ties, which were already described in more detail elsewherphase with 8<x,y<1 and the absorbing phase wix+ 1,
[9]. In Sec. Ill we present time evolution and a spectraly=0. The plot of the steady-state densitieandy as func-
analysis of the density of prey for the one-, two-, and threetions ofr for the one- and three-dimensional models, based
dimensional version of our model. Section IV contains theon previous simulationf9], is shown in Fig. 1. Results for
analysis of the standard deviation of density of prey as ahe two-dimensional model are not shown but they interpo-
function of time. In that section we also suggest a relationate between the one- and three-dimensional graphs with the
with stochastic resonance. Section V contains our conclueritical point located at =r (2)~0.11.
sions.

Ill. TIME EVOLUTION AND SPECTRAL ANALYSIS

II. MODEL AND ITS STEADY-STATE PROPERTIES Let us ask the following question: What is the time evo-
| 2 site of a-di ional ian lat ¢ lution of densitiesx(t) andy(t) in the active phase of our
In our model a site of a-dimensional Cartesian lattice of ,,4e|7 Because the model is driven by stochastic dynamics,

linear sizelL can be empty, occupied by a single prey, 0CCU-pe exnected answer to this question is that these quantities
pied by a single predator, or occupied by a single prey and a

single predator. The dynamics of our model is specified as
follows:

(i) Choose a site at random.

(i) With the probabilityr (0<r<1) update a prey at the 0.0035
chosen sitdif there is one; otherwise do nothindProvided 0.003 |3
that at least one neighbor of the chosen site is not occupiet  .0025
by a prey, the preywhich is to be updatedproduces one
offspring and places it on the empty neighboring §it¢here
are more empty sites, one of them is chosen randpr@lth-
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erwise(i.e., when there is a prey on each neighboring)site 0.001 7
the prey does not bregdue to overcrowding 0.0005 42 -

(iii) With the probability I-r update a predator at the 0 N
chosen sitdif there is one. Provided that the chosen site is 0 005 01 015 02 025 03 035 04 045 05

w/(2r

not occupied by a prey, the predator dieghungej. If there
is a prey on that site, the predator survives and consumes the FIG. 3. Power spectrun(w) for the one-dimensional model

prey from the site it occupies. If there is at least one neighandr=0.7 (A), 0.6(¢), 0.55(+), and 0.52(). Calculations are
boring site that is not occupied by a predator, the predatomade forL =10%.
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FIG. 4. Time evolution ok(t) (solid line) andy(t) (dotted ling FIG. 6. Time evolution ok(t) (solid line) andy(t) (dotted ling
for the two-dimensional model amd-0.3. Calculations were made ¢, the three-dimensional model amd=0.3. Calculations were
for the linear size =200. made for the linear size = 30.
exhibit more or less random fluctuations. Presented belowase is also very broad. However, in a certain rangeafe
results obtained using Monte Carlo simulations show thag€an see a pronounced peak in the spectrum at a certain
these expectations are not always correct. r-dependent frequency. This peak is related to the appear-
ance of a certain slow mode that can also be seen in Fig. 4.
Let us also notice that upon approachim@2) (~0.11) this
peak diminishes and shifts toward lower frequencies. As will

Such random fluctuations are clearly observed for thée shown below, the behavior of the two-dimensional model
one-dimensional model in the entire active phfise.,, for IS in some sense intermediate between the behavior of the
1>r>r,(1)~0.491, and an example far=0.6 is shownin ©one- and three-dimensional models.

Fig. 2. To analyze the time evolution more quantitatively, we

calculated the Fourier power spectrumxgt) andy(t), and C.d=3

the results forS(w) =|x(w)| are shown in Fig. 3. The spec- The most interesting results are obtained for the three-

trum of y(t) is similar to that ofx(t) and is not shown. One dimensional model. In Fig. 6 we _show the time evolution of

can see that the spectrum is very broad, which is in agreeX(t) andy(t) for r=0.3. For this value of the system

ment with a rather random pattern observed in Fig. 2. Thé@xhibits very regular oscillations and the spectr(fig. 7)

spectrum is calculated using the intervals of 500 Monteh@s a very high and sharp peak. Such regular oscillations

Carlo steps, and averaging is made over 100 such intervaldPpear only in a certain range ofFor sufficiently large or

The S(w=0) value is not shown. sufficiently smallr the irregular behavior, similar to that
shown in Fig. 2 sets in.

A.d=1

B.d=2 IV. STANDARD DEVIATION AND ITS FINITE-SIZE

In this case populations of prey and predators also evolve ANALYSIS
in time rather irregularlysee Fig. 4. Such irregular behavior

is reflected in Fig. 5, which shows that the spectrum in thisC The results shown in the preceding section clearly indi-

ate a qualitative difference in the temporal evolution of the
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FIG. 5. Power spectrun$(w) for the two-dimensional model FIG. 7. Power spectrur8(w) for the three-dimensional model

andr=0.6 (x), 0.5(A), 0.4(0J), 0.3(+), and 0.2(<). The in- andr=0.5 (A), 0.4(0), 0.3 (+), and 0.2(<). Calculations are
crease of the low-frequency part for decreasing related to ap- made forL=30. The maximum value 08(w) for r=0.3 is S«
proaching the critical point at~0.11 (critical slowing down. ~0.12.
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FIG. 8. Standard deviatiom as a function of for the one{0J), FIG. 9. Standard deviation as a function of 1% for (a)

two- (<), and three-dimensional mode(s). Ford=1, 2, and 3  §—3 andr=0.3 (©), (b) d=3 andr=05 (+), (c) d=2 and
calculations were made fdr=30000, 150, and 30, respectively. ,_q 3 @), and(d) d=1 andr=0.6 (x).
For each value of we made runs of 2 10* Monte Carlo steps.

but in the double-logarithmic scale. All the data, excdpt
one- and three-dimensional models. Pronounced oscillations 3 andr = 0.3, approximately follow the solid line of slope
observed in the three-dimensional case prompted us to asi2 that confirms the scaling~ 1/L%2. However, ford=3
the following question: What is the amplitude of these oscil-and r=0.3 one observes a strong deviation from the ex-
lations in the thermodynamic limit(—oc)? To answer this pected scaling, and most likefin agreement with Fig.)he
question we calculated the standard deviatoof x(t) for ~ standard deviation will remain finite fdr—<. Let us also
d=1,2,3 and various system sizksand values ofr. This  emphasize that simulations fd=3 andr=0.3 were rather
quantity roughly corresponds to the amplitude of oscillationsextensive: we made runs of>&L0* Monte Carlo steps for
(or fluctuations of x(t). The behavior ofr as a function of systems of linear size up to=150.
r is shown in Fig. 8. Fod=1 the standard deviation is To suggest some explanation of our results, let us first
only weaklyr dependent and is a decreasing functiorr.of examine our model using the mean-field approximation.
The increase ofr upon decreasingis an expected behavior, From the above-stated dynamical rules, after neglecting
since the largest fluctuations usually occur at the criticasome correlations, one can easily derive the following mean-
point r (1) (~0.49). For the two-dimensional case,is field equationg9]:
also weaklyr dependent, but one can see a small maximum ax(t
of o aroundr =0.3. On the other hand, for thik=3 case a X)) 2d
pronounced maximum aroumd= 0.3 is observed. Let us no- gt~ XOL=XOT = (1=0)x0y (), )
tice that this maximum is not related to the critical point,
which in this case is located at a much smaller value,of dy(t) o
namely atr =r(3)~0.05. On general grounds one expects —g; — (1= NXOY(O[1=y(OT] = (1=)[1=x(O)]y(1).
that the outside critical point correlation length is finite in 3)
our model and thus the standard deviatiorx() [and also
of y(t)] should scale as IL#2. Thus, in the thermodynamic ~ These equations are very similar to Ed), except that
limit o should converge to zero and so should the amplitudehey contain some “environmental capacity” terms. Al-
of oscillations. though we did not succeed in solving E@8) and (3) ana-
Finite-size data, which we present in Figs. 9 and 10, showytically, these equations can be easily solved numerically.
that in the three-dimensional case this argument is false. Ifirst, equating to zero the left-hand sides of Eg$.and(3),
Fig. 9 we plot the standard deviatiam as a function of we obtain the so-called steady-state equations, and the solu-
1/1L92, 1f the above argument about the asymptotic scaling ofionsx andy of these equations fat=3 are shown in Fig. 1.
o were correct tharr should linearly approach zero fdr Numerical analysis indicatg®] that time-dependent so-
—o. Our data show that this is indeed the casedierl,2, lutions x(t), y(t) of Egs. (2) and (3) asymptotically (for
and we expect that fal=1,2 such a scaling holds for arbi- infinite time) always approach the steady-state solutions.
trary r in the active phase. However, the behaviodef3 is  Since these mean-field equations include the “environmental
different. Although forr =0.5 the scaling seems to hold, it is capacity” terms[1—x(t)?%] and[1—y(t)?%], the absence
clearly violated forr =0.3 whereo does not even converge of limit-cycle solutions is an expected feature. However, for
to zero. It means that fo=3 andr presumably within a small r an approach to the steady state proceeds through
certain vicinity of 0.3, the amplitude of oscillations remains many oscillations and the system resembles a weakly
finite in the thermodynamic limit. To our knowledge, this is damped two-dimensional oscillator.
the first example of oscillatory behavior in a microscopic In our opinion, this quasioscillatory behavior suggests a
model with stochastic dynamics and without external pericertain mechanism that can explain the origin of such regular
odic force. oscillations. First, let us notice that noise, which is an intrin-
An additional indication of anomalous behavior can besic feature of the dynamics of our model, is clearly neglected
seen in Fig. 10, where we present the same data as in Fig.i® the mean-field approximatiof2), (3). In our opinion,
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V. CONCLUSIONS

In the present paper we examined the time evolution of
& 7 densities of prey and predators in a certain lattice model. As
our main result we have found that for the three-dimensional
71 case these densities might exhibit very regular periodic os-
cillations. We presented numerical evidence that the ampli-
tude of these oscillations is nonzero, even in the thermody-
namic limit.

Is it possible to suggest a certain general feature of our
model that would be responsible for the existence of such
oscillations? As far as the steady-state properties of the

L model are concerned the model has two phases: active and
‘75 6 7 8 9 10 11 12 13 1 15 16 absorbing. Since the absorbing state is uniGuiesites being

nL? occupied by prey as expected, the transition between them

belongs to the directed-percolation universality class. How-
ever, a closer look at the dynamics shows that there is yet
another absorbing state in this model: all sites being empty.
But this absorbing state is very unstable and the model al-
most never ends up in this statesingle prey will invade the
whole system in the absence of predatoisithough this
when coupled to the nonlinear oscillator, EG8) and (3),  absorbing state is irrelevant as far as the critical properties
this noise might, through some sort of stochastic resonancere concerned, this state might, in our opinion, affect the
lead to the observed regular oscillations. off-critical dynamical properties of our model: First let us

One indication of a resonatory mechanism is shown imotice that empty sites are likely candidates for becoming
Fig. 7, where for =0.3 one can see a second pealSph)  occupied. Thus, when large clusters of empty sites can be
at approximately twice the frequency of the main peak. Preformed, large fluctuations of densities are likely to happen
sumably, with more accurate calculations of the spectrunio0. Such large clusters can form for neither larg@aimost
one could also see higher-order harmonics. Another indicadll sites occupied by prey and predatansr for smallr (for
tion is in our opinion the very shape ofas a function of T only slightly larger tharr; almost all sites are occupied by
for d=3 in Fig. 8. Let us notice that is a measure of Prey making the intermediate regime pthe only possibil-

fluctuations of(t) and thus might be regarded as a responséty' Let us also notice that this percolative argument explains

of our system to the noise. From Fig. 8 it is clear that thelN® absence of oscillations for thie=1 case(there is no

maximum of the response {-0.3) does not coincide with percolati_on ind=1, except for al! sit_es k_)eing emphBut to
the maximum of the nois@vhich most likely occurs at criti- make this argument more convincing it would be necessary

. B L o to examine in detail the percolative properties of our model.
cally, i.e., atr=r.~0.05), which is also a characteristic fea- . ; .
Since the present model might be one of the simplest models
ture of resonatory systems.

An id that d . led t exhibiting such oscillations, explaining its properties would
n ldea al random noise ~ couple 0 Somepe very desirable, especially because a similar mechanism

low-dimensional ~autonomous  system might lead t0jght pe responsible for oscillations in other spatially ex-
oscillatory behavior is not new. Some time ago Gat@l.  tanded systems.

[11] studied a certain two-dimensional dynamical model Finally, we would like to make a very qualitative com-
with a point attractor. In its parameter space their model iarison of our results with experimental data on the oscilla-
located close to the region with |imit'CyC|e afttractor, and as qOry behavior in prey-preda’[or Systems_ A|th0ugh some 0s-
result some transient oscillations are observed. Qualitativelgillatory behavior can be seen, these déee, e.g.[6])
their model is thus very similar to the systdf), (2). Gang clearly show that these oscillations are very irregular. In our
et al. showed that when such a system is perturbed by apinion, qualitatively, these data are more similar to dur
random noise, coherent oscillations are observed, caused by2 results rather than td=3. But this might not be very
some kind of stochastic resonance. It might be interesting tsurprising, since the “world” of prey-predator systems for
examine the behavior of the systdR), (3) subjected to ran- which these data were collected is basically two-
dom noise. However, since this system is only a low-dimensional. Since some populations develop rather three-
dimensional approximation, it is by no means obvious that itdimensional connections between individugs., fishek it

will correctly describe the behavior of our microscopic would be interesting to check whether oscillations in such
model. populations are more regular.

Ino -4

6L

FIG. 10. Standard deviatioor as a function ofLY in a double
logarithmic scale for(@ d=3 andr=0.3 (¢), (b) d=3 and
r=0.5(+), (c) d=2 andr=0.3 (), and(d) d=1 andr=0.6
(X). The solid line has slope 1/2.
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