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Oscillatory behavior in a lattice prey-predator system

Adam Lipowski
Department of Mathematics, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom

and Department of Physics, A. Mickiewicz University, 61-614 Poznan´, Poland
~Received 23 June 1999!

Using Monte Carlo simulations we study a lattice model of a prey-predator system. We show that in the
three-dimensional model populations of preys and predators exhibit coherent periodic oscillations but such a
behavior is absent in lower-dimensional models. Finite-size analysis indicate that amplitude of these oscilla-
tions is finite even in the thermodynamic limit. This is an example of a microscopic model with stochastic
dynamics which exhibits oscillatory behavior without any external driving force. We suggest that oscillations
in our model are induced by some kind of stochastic resonance.
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I. INTRODUCTION

Oscillatory behavior in spatially extended systems, wh
appears in various forms in many branches of physics, is
not fully understood@1#. As an example of such a behavio
we can mention periodic oscillations in certain autocataly
reactions@2#. From the theoretical point of view, the ma
problem is that inevitable fluctuations should wipe out a
coherent behavior in such systems, thus questioning the
existence of periodic oscillations. Indeed, numerical analy
of a certain one-dimensional reaction diffusion mod
~‘‘Brusselator’’! confirms a very strong destructive role
the fluctuations in such systems@3#.

Another example of this kind is the oscillatory behavior
prey-predator systems, which is one of the classical probl
in population dynamics. In the most transparent way s
oscillations were observed for populations of hares a
lynxes @4#. The earliest explanation of oscillations in su
systems was proposed by Lotka and Volterra@5#. In their
model, populations of prey and predators are described
the following set of differential equations:

dx

dt
5ax2bxy,

dy

dt
52cy1dxy, ~1!

where x and y denote the number of prey and predato
respectively, anda,b,c,dare certain positive constants.

Simple analyses of model~1! indeed reveal the existenc
of a limit cycle, i.e., populations of prey and predators e
hibit periodic~in time! oscillations. However, model~1! has
certain drawbacks. In particular, it predicts an unbound
exponential growth of the number of prey in the absence
predators (y50). To cure this defect one has to introdu
additional terms into these equations~environmental capac
ity! and such terms in general destroy the limit-cycle so
tions and asymptotically~i.e., for t→`! the constant solu-
tions are obtained@7,8#. In this respect model~1! might be
more precisely termed as structurally unstable.

In principle, one can replace right-hand sides of the ab
equations by more complicated functions ofx andy, and the
resulting equations@6# will exhibit both a limit-cycle behav-
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ior and remain bounded fory50. It is not clear, however,
how these particular functions should be related to charac
istics of the populations.

Recently, a lattice model of a prey-predator system w
introduced@9#. It was shown that in the steady state th
model has two phases:~i! an active phase with a positiv
fraction of both prey and predators and~ii ! an absorbing
phase with predators being extinct and prey invading
whole system. For certain values of a control parameter
model undergoes a phase transition of the direct
percolation universality class, which is actually an anti
pated property, taking into account the existence of a sin
absorbing state in the model’s dynamics@10#.

An important feature of such a lattice model is that
properties might be studied using controllable techniqu
e.g., Monte Carlo simulations, rather than postulated eq
tions. Moreover, such a microscopic model takes into
count fluctuations in the system that are completely
glected in models based on differential equations such as
~1!. And it is these fluctuations that are responsible for
appearance of the phase transition in this model, since
mean-field approximation, which is equivalent to a certa
set of differential equations similar to Eq.~1! ~and thus ne-
glects fluctuations!, predicts that the active phase is the g
neric phase of the model for all values of the control para
eter, and no transition takes place.

In the present paper we examine the time evolution
densities of preyx(t) and predatorsy(t) in the above-
described lattice model. One might expect that fluctuatio
which in our model are caused by the stochastic nature of
dynamics, result in a random and noncorrelated evolution
these densities. And indeed such a behavior is observed
only in a one-dimensional version of our model. In a tw
dimensional model the behavior of these densities is
irregular, but a pronounced peak in a Fourier transform
x(t) and y(t) appears, and for the three-dimensional mo
very regular periodic oscillations are observed. We arg
that these oscillations are induced by a certain kind of s
chastic resonance@12# and we suggest an analogy with
certain low-dimensional dynamical system examined so
time ago by Ganget al. @11#.
5179 © 1999 The American Physical Society
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5180 PRE 60ADAM LIPOWSKI
In addition to offering a model of prey-predator system
our results are also of somewhat more general interest. T
show that, in spatially extended systems, intrinsic fluct
tions alone might induce periodic oscillations. This should
contrasted with the standard stochastic resonance se
where some sort of external periodic perturbation is requir

The paper is organized as follows. In Sec. II we introdu
the model and only briefly describe its steady-state prop
ties, which were already described in more detail elsewh
@9#. In Sec. III we present time evolution and a spect
analysis of the density of prey for the one-, two-, and thr
dimensional version of our model. Section IV contains t
analysis of the standard deviation of density of prey a
function of time. In that section we also suggest a relat
with stochastic resonance. Section V contains our con
sions.

II. MODEL AND ITS STEADY-STATE PROPERTIES

In our model a site of ad-dimensional Cartesian lattice o
linear sizeL can be empty, occupied by a single prey, occ
pied by a single predator, or occupied by a single prey an
single predator. The dynamics of our model is specified
follows:

~i! Choose a site at random.
~ii ! With the probabilityr (0,r ,1) update a prey at the

chosen site~if there is one; otherwise do nothing!. Provided
that at least one neighbor of the chosen site is not occu
by a prey, the prey~which is to be updated! produces one
offspring and places it on the empty neighboring site~if there
are more empty sites, one of them is chosen randomly!. Oth-
erwise~i.e., when there is a prey on each neighboring si!,
the prey does not breed~due to overcrowding!.

~iii ! With the probability 12r update a predator at th
chosen site~if there is one!. Provided that the chosen site
not occupied by a prey, the predator dies~of hunger!. If there
is a prey on that site, the predator survives and consume
prey from the site it occupies. If there is at least one nei
boring site that is not occupied by a predator, the preda

FIG. 1. Steady-state densities of prey~dotted lines! and preda-
tors~dashed lines! for the one-~h! and three-dimensional~1! mod-
els as functions ofr, as calculated using Monte Carlo simulatio
@9#. Mean-field results are shown by a solid line.
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produces one offspring and places it on the empty site~cho-
sen randomly when there are more such sites!.

A steady-state description of our model is given in term
of densities of preyx and predatorsy, which might also be
regarded as the probabilities that a given site is occupied
a prey or a predator, respectively. Monte Carlo simulatio
of the above model predict@9# that this model will undergo
the phase transition at a certain value of the parame
r 5r c(d). The transition pointr c(d) separates the active
phase with 0,x,y,1 and the absorbing phase withx51,
y50. The plot of the steady-state densitiesx andy as func-
tions of r for the one- and three-dimensional models, bas
on previous simulations@9#, is shown in Fig. 1. Results for
the two-dimensional model are not shown but they interp
late between the one- and three-dimensional graphs with
critical point located atr 5r c(2);0.11.

III. TIME EVOLUTION AND SPECTRAL ANALYSIS

Let us ask the following question: What is the time ev
lution of densitiesx(t) and y(t) in the active phase of our
model? Because the model is driven by stochastic dynam
the expected answer to this question is that these quant

FIG. 2. Time evolution ofx(t) andy(t) for the one-dimensional
model and r 50.6. Calculations were made for the linear siz
L52000.

FIG. 3. Power spectrumS(v) for the one-dimensional mode
andr 50.7 (n), 0.6 ~L!, 0.55~1!, and 0.52~h!. Calculations are
made forL5104.
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exhibit more or less random fluctuations. Presented be
results obtained using Monte Carlo simulations show t
these expectations are not always correct.

A. d51

Such random fluctuations are clearly observed for
one-dimensional model in the entire active phase@i.e., for
1.r .r c(1);0.491#, and an example forr 50.6 is shown in
Fig. 2. To analyze the time evolution more quantitatively,
calculated the Fourier power spectrum ofx(t) andy(t), and
the results forS(v)5ux(v)u are shown in Fig. 3. The spec
trum of y(t) is similar to that ofx(t) and is not shown. One
can see that the spectrum is very broad, which is in ag
ment with a rather random pattern observed in Fig. 2. T
spectrum is calculated using the intervals of 500 Mo
Carlo steps, and averaging is made over 100 such inter
The S(v50) value is not shown.

B. d52

In this case populations of prey and predators also evo
in time rather irregularly~see Fig. 4!. Such irregular behavio
is reflected in Fig. 5, which shows that the spectrum in t

FIG. 4. Time evolution ofx(t) ~solid line! andy(t) ~dotted line!
for the two-dimensional model andr 50.3. Calculations were mad
for the linear sizeL5200.

FIG. 5. Power spectrumS(v) for the two-dimensional mode
and r 50.6 (!), 0.5 ~n!, 0.4 ~h!, 0.3 ~1!, and 0.2~L!. The in-
crease of the low-frequency part for decreasingr is related to ap-
proaching the critical point atr;0.11 ~critical slowing down!.
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case is also very broad. However, in a certain range ofr one
can see a pronounced peak in the spectrum at a ce
r-dependent frequency. This peak is related to the app
ance of a certain slow mode that can also be seen in Fig
Let us also notice that upon approachingr c(2) (;0.11) this
peak diminishes and shifts toward lower frequencies. As w
be shown below, the behavior of the two-dimensional mo
is in some sense intermediate between the behavior of
one- and three-dimensional models.

C. d53

The most interesting results are obtained for the thr
dimensional model. In Fig. 6 we show the time evolution
x(t) and y(t) for r 50.3. For this value ofr the system
exhibits very regular oscillations and the spectrum~Fig. 7!
has a very high and sharp peak. Such regular oscillati
appear only in a certain range ofr. For sufficiently large or
sufficiently small r the irregular behavior, similar to tha
shown in Fig. 2 sets in.

IV. STANDARD DEVIATION AND ITS FINITE-SIZE
ANALYSIS

The results shown in the preceding section clearly in
cate a qualitative difference in the temporal evolution of t

FIG. 6. Time evolution ofx(t) ~solid line! andy(t) ~dotted line!
for the three-dimensional model andr 50.3. Calculations were
made for the linear sizeL530.

FIG. 7. Power spectrumS(v) for the three-dimensional mode
and r 50.5 (n), 0.4 ~h!, 0.3 ~1!, and 0.2~L!. Calculations are
made forL530. The maximum value ofS(v) for r 50.3 is Smax

;0.12.
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one- and three-dimensional models. Pronounced oscillat
observed in the three-dimensional case prompted us to
the following question: What is the amplitude of these os
lations in the thermodynamic limit (L→`)? To answer this
question we calculated the standard deviations of x(t) for
d51,2,3 and various system sizesL and values ofr. This
quantity roughly corresponds to the amplitude of oscillatio
~or fluctuations! of x(t). The behavior ofs as a function of
r is shown in Fig. 8. Ford51 the standard deviations is
only weakly r dependent and is a decreasing function or.
The increase ofs upon decreasingr is an expected behavior
since the largest fluctuations usually occur at the criti
point r c(1) (;0.49). For the two-dimensional case,s is
also weaklyr dependent, but one can see a small maxim
of s aroundr 50.3. On the other hand, for thed53 case a
pronounced maximum aroundr 50.3 is observed. Let us no
tice that this maximum is not related to the critical poin
which in this case is located at a much smaller value or,
namely atr 5r c(3);0.05. On general grounds one expe
that the outside critical point correlation length is finite
our model and thus the standard deviation ofx(t) @and also
of y(t)# should scale as 1/Ld/2. Thus, in the thermodynami
limit s should converge to zero and so should the amplit
of oscillations.

Finite-size data, which we present in Figs. 9 and 10, sh
that in the three-dimensional case this argument is false
Fig. 9 we plot the standard deviations as a function of
1/Ld/2. If the above argument about the asymptotic scaling
s were correct thans should linearly approach zero forL
→`. Our data show that this is indeed the case ford51,2,
and we expect that ford51,2 such a scaling holds for arb
trary r in the active phase. However, the behavior ofd53 is
different. Although forr 50.5 the scaling seems to hold, it
clearly violated forr 50.3 wheres does not even converg
to zero. It means that ford53 and r presumably within a
certain vicinity of 0.3, the amplitude of oscillations remai
finite in the thermodynamic limit. To our knowledge, this
the first example of oscillatory behavior in a microscop
model with stochastic dynamics and without external pe
odic force.

An additional indication of anomalous behavior can
seen in Fig. 10, where we present the same data as in F

FIG. 8. Standard deviations as a function ofr for the one-~h!,
two- ~L!, and three-dimensional models~1!. For d51, 2, and 3
calculations were made forL530000, 150, and 30, respectivel
For each value ofr we made runs of 23104 Monte Carlo steps.
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but in the double-logarithmic scale. All the data, exceptd
53 andr 50.3, approximately follow the solid line of slop
1/2 that confirms the scalings;1/Ld/2. However, ford53
and r 50.3 one observes a strong deviation from the e
pected scaling, and most likely~in agreement with Fig. 9! the
standard deviation will remain finite forL→`. Let us also
emphasize that simulations ford53 andr 50.3 were rather
extensive: we made runs of 53104 Monte Carlo steps for
systems of linear size up toL5150.

To suggest some explanation of our results, let us fi
examine our model using the mean-field approximati
From the above-stated dynamical rules, after neglec
some correlations, one can easily derive the following me
field equations@9#:

dx~ t !

dt
5rx~ t !@12x~ t !2d#2~12r !x~ t !y~ t !, ~2!

dy~ t !

dt
5~12r !x~ t !y~ t !@12y~ t !2d#2~12r !@12x~ t !#y~ t !.

~3!

These equations are very similar to Eq.~1!, except that
they contain some ‘‘environmental capacity’’ terms. A
though we did not succeed in solving Eqs.~2! and ~3! ana-
lytically, these equations can be easily solved numerica
First, equating to zero the left-hand sides of Eqs.~2! and~3!,
we obtain the so-called steady-state equations, and the s
tionsx andy of these equations ford53 are shown in Fig. 1.

Numerical analysis indicates@9# that time-dependent so
lutions x(t), y(t) of Eqs. ~2! and ~3! asymptotically~for
infinite time! always approach the steady-state solutio
Since these mean-field equations include the ‘‘environme
capacity’’ terms@12x(t)2d# and @12y(t)2d#, the absence
of limit-cycle solutions is an expected feature. However,
small r an approach to the steady state proceeds thro
many oscillations and the system resembles a wea
damped two-dimensional oscillator.

In our opinion, this quasioscillatory behavior suggests
certain mechanism that can explain the origin of such reg
oscillations. First, let us notice that noise, which is an intr
sic feature of the dynamics of our model, is clearly neglec
in the mean-field approximation~2!, ~3!. In our opinion,

FIG. 9. Standard deviations as a function of 1/Ld/2 for ~a!
d53 and r 50.3 (L), ~b! d53 and r 50.5 (1), ~c! d52 and
r 50.3 (h), and~d! d51 andr 50.6 (3).
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when coupled to the nonlinear oscillator, Eqs.~2! and ~3!,
this noise might, through some sort of stochastic resonan
lead to the observed regular oscillations.

One indication of a resonatory mechanism is shown
Fig. 7, where forr 50.3 one can see a second peak ofS(v)
at approximately twice the frequency of the main peak. P
sumably, with more accurate calculations of the spectru
one could also see higher-order harmonics. Another indi
tion is in our opinion the very shape ofs as a function ofr
for d53 in Fig. 8. Let us notice thats is a measure of
fluctuations ofx(t) and thus might be regarded as a respon
of our system to the noise. From Fig. 8 it is clear that th
maximum of the response (r;0.3) does not coincide with
the maximum of the noise~which most likely occurs at criti-
cally, i.e., atr 5r c;0.05!, which is also a characteristic fea
ture of resonatory systems.

An idea that random noise coupled to som
low-dimensional autonomous system might lead
oscillatory behavior is not new. Some time ago Ganget al.
@11# studied a certain two-dimensional dynamical mod
with a point attractor. In its parameter space their model
located close to the region with limit-cycle attractor, and as
result some transient oscillations are observed. Qualitativ
their model is thus very similar to the system~1!, ~2!. Gang
et al. showed that when such a system is perturbed by
random noise, coherent oscillations are observed, caused
some kind of stochastic resonance. It might be interesting
examine the behavior of the system~2!, ~3! subjected to ran-
dom noise. However, since this system is only a low
dimensional approximation, it is by no means obvious tha
will correctly describe the behavior of our microscopi
model.

FIG. 10. Standard deviations as a function ofLd in a double
logarithmic scale for~a! d53 and r 50.3 (L), ~b! d53 and
r 50.5 (1), ~c! d52 and r 50.3 (h), and ~d! d51 and r 50.6
(3). The solid line has slope 1/2.
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V. CONCLUSIONS

In the present paper we examined the time evolution
densities of prey and predators in a certain lattice model.
our main result we have found that for the three-dimensio
case these densities might exhibit very regular periodic
cillations. We presented numerical evidence that the am
tude of these oscillations is nonzero, even in the thermo
namic limit.

Is it possible to suggest a certain general feature of
model that would be responsible for the existence of s
oscillations? As far as the steady-state properties of
model are concerned the model has two phases: active
absorbing. Since the absorbing state is unique~all sites being
occupied by prey!, as expected, the transition between the
belongs to the directed-percolation universality class. Ho
ever, a closer look at the dynamics shows that there is
another absorbing state in this model: all sites being em
But this absorbing state is very unstable and the model
most never ends up in this state~a single prey will invade the
whole system in the absence of predators!. Although this
absorbing state is irrelevant as far as the critical proper
are concerned, this state might, in our opinion, affect
off-critical dynamical properties of our model: First let u
notice that empty sites are likely candidates for becom
occupied. Thus, when large clusters of empty sites can
formed, large fluctuations of densities are likely to happ
too. Such large clusters can form for neither larger ~almost
all sites occupied by prey and predators! nor for smallr ~for
r only slightly larger thanr c almost all sites are occupied b
prey! making the intermediate regime ofr the only possibil-
ity. Let us also notice that this percolative argument expla
the absence of oscillations for thed51 case~there is no
percolation ind51, except for all sites being empty!. But to
make this argument more convincing it would be necess
to examine in detail the percolative properties of our mod
Since the present model might be one of the simplest mo
exhibiting such oscillations, explaining its properties wou
be very desirable, especially because a similar mechan
might be responsible for oscillations in other spatially e
tended systems.

Finally, we would like to make a very qualitative com
parison of our results with experimental data on the osci
tory behavior in prey-predator systems. Although some
cillatory behavior can be seen, these data~see, e.g.,@6#!
clearly show that these oscillations are very irregular. In o
opinion, qualitatively, these data are more similar to ourd
52 results rather than tod53. But this might not be very
surprising, since the ‘‘world’’ of prey-predator systems f
which these data were collected is basically tw
dimensional. Since some populations develop rather th
dimensional connections between individuals~e.g., fishes!, it
would be interesting to check whether oscillations in su
populations are more regular.
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